Thursday, April 2, 2009

.Net Framework Interview Questions Part III

21. What is Application Domain?

Ans. The primary purpose of the AppDomain is to isolate an application from other applications. Win32 processes provide isolation by having distinct memory address spaces. This is effective, but it is expensive and doesn't scale well. The .NET runtime enforces AppDomain isolation by keeping control over the use of memory - all memory in the AppDomain is managed by the .NET runtime, so the runtime can ensure that AppDomains do not access each other's memory.
Objects in different application domains communicate either by transporting copies of objects across application domain boundaries, or by using a proxy to exchange messages.
MarshalByRefObject is the base class for objects that communicate across application domain boundaries by exchanging messages using a proxy. Objects that do not inherit from MarshalByRefObject are implicitly marshal by value. When a remote application references a marshal by value object, a copy of the object is passed across application domain boundaries.

22. How does an AppDomain get created?

Ans. AppDomains are usually created by hosts. Examples of hosts are the Windows Shell, ASP.NET and IE. When you run a .NET application from the command-line, the host is the Shell. The Shell creates a new AppDomain for every application.
AppDomains can also be explicitly created by .NET applications. Here is a C# sample which creates an AppDomain, creates an instance of an object inside it, and then executes one of the object's methods. Note that you must name the executable 'appdomaintest.exe' for this code to work as-is.
using System;
using System.Runtime.Remoting;

public class CAppDomainInfo : MarshalByRefObject
{
public string GetAppDomainInfo()
{
return "AppDomain = " + AppDomain.CurrentDomain.FriendlyName;
}
}
public class App
{
public static int Main()
{
AppDomain ad = AppDomain.CreateDomain( "Andy's new domain", null, null );
ObjectHandle oh = ad.CreateInstance( "appdomaintest", "CAppDomainInfo" );
CAppDomainInfo adInfo = (CAppDomainInfo)(oh.Unwrap());
string info = adInfo.GetAppDomainInfo();
Console.WriteLine( "AppDomain info: " + info );
return 0;
}
}
23. What is serialization in .NET? What are the ways to control serialization?

Ans. Serialization is the process of converting an object into a stream of bytes. Deserialization is the opposite process of creating an object from a stream of bytes. Serialization/Deserialization is mostly used to transport objects (e.g. during remoting), or to persist objects (e.g. to a file or database).Serialization can be defined as the process of storing the state of an object to a storage medium. During this process, the public and private fields of the object and the name of the class, including the assembly containing the class, are converted to a stream of bytes, which is then written to a data stream. When the object is subsequently deserialized, an exact clone of the original object is created.
· Binary serialization preserves type fidelity, which is useful for preserving the state of an object between different invocations of an application. For example, you can share an object between different applications by serializing it to the clipboard. You can serialize an object to a stream, disk, memory, over the network, and so forth. Remoting uses serialization to pass objects "by value" from one computer or application domain to another.
· XML serialization serializes only public properties and fields and does not preserve type fidelity. This is useful when you want to provide or consume data without restricting the application that uses the data. Because XML is an open standard, it is an attractive choice for sharing data across the Web. SOAP is an open standard, which makes it an attractive choice.
There are two separate mechanisms provided by the .NET class library - XmlSerializer and SoapFormatter/BinaryFormatter. Microsoft uses XmlSerializer for Web Services, and uses SoapFormatter/BinaryFormatter for remoting. Both are available for use in your own code.
Why do I get errors when I try to serialize a Hashtable?
XmlSerializer will refuse to serialize instances of any class that implements IDictionary, e.g. Hashtable. SoapFormatter and BinaryFormatter do not have this restriction.

24. What is exception handling?

Ans. When an exception occurs, the system searches for the nearest catch clause that can handle the exception, as determined by the run-time type of the exception. First, the current method is searched for a lexically enclosing try statement, and the associated catch clauses of the try statement are considered in order. If that fails, the method that called the current method is searched for a lexically enclosing try statement that encloses the point of the call to the current method. This search continues until a catch clause is found that can handle the current exception, by naming an exception class that is of the same class, or a base class, of the run-time type of the exception being thrown. A catch clause that doesn't name an exception class can handle any exception.
Once a matching catch clause is found, the system prepares to transfer control to the first statement of the catch clause. Before execution of the catch clause begins, the system first executes, in order, any finally clauses that were associated with try statements more nested that than the one that caught the exception.
Exceptions that occur during destructor execution are worth special mention. If an exception occurs during destructor execution, and that exception is not caught, then the execution of that destructor is terminated and the destructor of the base class (if any) is called. If there is no base class (as in the case of the object type) or if there is no base class destructor, then the exception is discarded.

25 What is Assembly?

Ans. Assemblies are the building blocks of .NET Framework applications; they form the fundamental unit of deployment, version control, reuse, activation scoping, and security permissions. An assembly is a collection of types and resources that are built to work together and form a logical unit of functionality. An assembly provides the common language runtime with the information it needs to be aware of type implementations. To the runtime, a type does not exist outside the context of an assembly.
Assemblies are a fundamental part of programming with the .NET Framework. An assembly performs the following functions:
· It contains code that the common language runtime executes. Microsoft intermediate language (MSIL) code in a portable executable (PE) file will not be executed if it does not have an associated assembly manifest. Note that each assembly can have only one entry point (that is, DllMain, WinMain, or Main).
· It forms a security boundary. An assembly is the unit at which permissions are requested and granted.
· It forms a type boundary. Every type's identity includes the name of the assembly in which it resides. A type called MyType loaded in the scope of one assembly is not the same as a type called MyType loaded in the scope of another assembly.
· It forms a reference scope boundary. The assembly's manifest contains assembly metadata that is used for resolving types and satisfying resource requests. It specifies the types and resources that are exposed outside the assembly. The manifest also enumerates other assemblies on which it depends.
· It forms a version boundary. The assembly is the smallest versionable unit in the common language runtime; all types and resources in the same assembly are versioned as a unit. The assembly's manifest describes the version dependencies you specify for any dependent assemblies.
· It forms a deployment unit. When an application starts, only the assemblies that the application initially calls must be present. Other assemblies, such as localization resources or assemblies containing utility classes, can be retrieved on demand. This allows applications to be kept simple and thin when first downloaded.
· It is the unit at which side-by-side execution is supported.
Assemblies can be static or dynamic. Static assemblies can include .NET Framework types (interfaces and classes), as well as resources for the assembly (bitmaps, JPEG files, resource files, and so on). Static assemblies are stored on disk in PE files. You can also use the .NET Framework to create dynamic assemblies, which are run directly from memory and are not saved to disk before execution. You can save dynamic assemblies to disk after they have executed.
There are several ways to create assemblies. You can use development tools, such as Visual Studio .NET, that you have used in the past to create .dll or .exe files. You can use tools provided in the .NET Framework SDK to create assemblies with modules created in other development environments. You can also use common language runtime APIs, such as Reflection.Emit, to create dynamic assemblies.

26. What are the contents of assembly?

Ans. In general, a static assembly can consist of four elements:
· The assembly manifest, which contains assembly metadata.
· Type metadata.
· Microsoft intermediate language (MSIL) code that implements the types.
· A set of resources.

27. What are the different types of assemblies?

Ans. Private, Public/Shared, Satellite

28. What is the difference between a private assembly and a shared assembly?

Ans. 1. Location and visibility: A private assembly is normally used by a single application, and is stored in the application's directory, or a sub-directory beneath. A shared assembly is normally stored in the global assembly cache, which is a repository of assemblies maintained by the .NET runtime. Shared assemblies are usually libraries of code which many applications will find useful, e.g. the .NET framework classes.
2. Versioning: The runtime enforces versioning constraints only on shared assemblies, not on private assemblies.

No comments: